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maging CSEM data in the presence of electrical anisotropy
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ABSTRACT

Formation anisotropy should be incorporated into the
analysis of controlled-source electromagnetic �CSEM� data
because failure to do so can produce serious artifacts in the re-
sulting resistivity images for certain data configurations of
interest. This finding is demonstrated in model and case stud-
ies. Sensitivity to horizontal resistivity will be strongest in
the broadside electric field data where detectors are offset
from the tow line. Sensitivity to vertical resistivity is stron-
gest for overflight data where the transmitting antenna passes
directly over the detecting antenna. Consequently, consistent
treatment of overflight and broadside electric field measure-
ments requires an anisotropic modeling assumption. To pro-
duce a consistent resistivity model for such data, we develop
and use a 3D CSEM imaging algorithm that treats transverse
anisotropy. The algorithm is based on nonlinear conjugate
gradients and full wave-equation modeling. It exploits paral-
lel computing systems to effectively treat 3D imaging prob-
lems and CSEM data volumes of industrial size. We use it to
demonstrate the anisotropic imaging process on model and
field data sets from the North Sea and offshore Brazil. We
also verify that isotropic imaging of overflight data alone pro-
duces an image generally consistent with vertical resistivity.
However, superior data fits are obtained when the same over-
flight data are analyzed assuming an anisotropic resistivity
model.

INTRODUCTION

New geophysical technologies can be combined with established
eismic methods to improve the characterization of reservoir fluids
n situations of practical interest. One technique that has emerged in
he last several years uses low-frequency electromagnetic �EM� en-
rgy �less than 10 Hz� to map variations in the subsurface electrical
esistivity of offshore oil and gas prospects �Eidesmo et al., 2002; El-
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ingsrud et al., 2002; Constable, 2006; MacGregor et al., 2006�. In
he marine controlled-source electromagnetic �CSEM� measure-

ent technique, a deep-towed electric dipole transmitter is used to
xcite a low-frequency EM signal that is measured on the seafloor by
lectric and magnetic field detectors, with the largest transmitter-de-
ector separations exceeding approximately 15 km. Electromagnet-
c �EM� data have been shown to be highly sensitive to changes in the
ore-fluid types and the location of oil and gas accumulations, given
hat oil and gas are far more resistive than brine or water. The CSEM
echnique therefore has the potential to extract valuable information
n reservoir fluid and rock properties that might not be sensed direct-
y by seismic methods. The technique has been used to interrogate
own to reservoir depths as deep as 4 km but benefits from structural
nformation from seismic imaging to help delineate the bulk reser-
oir and surrounding geologic structure �cf. MacGregor et al., 2007�.

Tompkins et al. �2004� and Tompkins �2005� recognize the impor-
ance of electrical anisotropy in the interpretation of CSEM data and
his result could be anticipated from measurements made in deviated
ells. Horizontally layered sedimentary sequences often arise in oil

nd gas exploration and can exhibit transverse anisotropy on a mac-
oscopic scale — a scale much larger than individual sedimentary
ayers. Transverse anisotropy is the simplest case to model �cf. New-

an and Alumbaugh, 2002�. Fortunately, this corresponds to many
ituations encountered in actual geologic basins in which CSEM
easurements are made for hydrocarbon exploration. Although it is

ossible to treat the more general form of the problem in which the
ormation anisotropy is modeled as a tensor with six independent el-
ments �cf. Weiss and Newman, 2002�, sedimentary formations are
requently horizontally layered or nearly so and the anisotropy can
e described by independent vertical and horizontal resistivities.Al-
hough there are cases in which anisotropy is not vertically trans-
erse and does not conform precisely to this scenario, vertical aniso-
ropy still represents a significant improvement over an isotropic

odeling assumption. Moreover, CSEM measurements could pre-
lude the ability to map generalized anisotropy because of limited
ata coverage and acquisition geometry. Whether they can is an area
f future research and is outside the scope of this paper.

Anisotropy can have a profound effect on CSEM measurements
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F52 Newman et al.
nd its effect depends strongly on acquisition geometry. The study of
lectrical currents in a double half-space by Lu and Xia �2007� is il-
uminating. Their model consists of an upper half-space that is iso-
ropic �the sea water� and a lower half-space exhibiting transverse
nisotropy �the sea bed�. Vertical current flow and, hence, vertical re-
istivity have a much stronger impact on overflight electric-field
easurements �null coupled data excluded�; overflight data corre-

pond to the case in which the CSEM tow line is over the detector.
owever, broadside measurements in which the measuring antenna

s offset from and parallel to the tow line are far more sensitive to
orizontal currents and, hence, the horizontal resistivity of the sea
ed.

Large-scale 3D imaging is also receiving considerable attention in
he interpretation of CSEM data �Carazzone et al., 2005; Plessix and
an der Sman, 2007, 2008; Carazzone et al., 2008; Commer and
ewman, 2008; Commer et al., 2008; Gribenko and Zhdanov, 2007;
lessix and Mulder, 2008; Zach et al., 2008�.Although 1D modeling
nd inversion is relatively easy and trial-and-error 3D forward mod-
ling is seemingly straightforward �Green et al., 2005; Hoversten et
l., 2006; Weiss and Constable, 2006�, the need for 3D imaging is
ecessary because the search for hydrocarbons now increasingly oc-
urs in highly complex situations in which hydrocarbon effects are
ubtle aspects of the total offshore geologic environment. Further
omplicating matters is the realization that electrical anisotropy also
eeds to be incorporated directly into the imaging process �Caraz-
one et al., 2008; Jing et al., 2008; Newman and Commer, 2008�.
ailure to properly treat anisotropy can produce misleading and
ometimes uninterpretable results when broadside data are included.

erely excluding broadside data-detecting antennas is frequently an
ssue when 3D coverage is desired.

In this paper, we introduce a 3D imaging approach that treats
ransverse anisotropy, which seems to be relevant for many practical
xploration scenarios. We use it to study the imaging of electrical an-
sotropy in synthetic and field data set examples. The algorithm is
ased on nonlinear conjugate gradients and full wave-equation mod-
ling and is an extension of an algorithm designed for 3D isotropic
edia �Commer and Newman, 2008�. It exploits parallel computing

ystems to effectively treat large-scale 3D imaging problems and
SEM data volumes of industrial size.

IMAGING FRAMEWORK

In setting up the 3D imaging framework, we use finite-difference
FD� approximations to Maxwell’s equations in the diffusive ap-
roximation for computing predicted data and cost functional gradi-
nts. The imaging problem is solved using a nonlinear conjugate-
radient scheme based on a regularized least-squares approach im-
lemented on parallel computing systems. Many of the details of the
D imaging approach adopted in this paper have been published
lsewhere for the isotropic case �Newman and Boggs, 2005; Com-
er and Newman, 2008�. An extension to treat the case of media ex-

ibiting transverse anisotropy is not difficult and we provide a short
iscussion of the methodology here and in the appendix. For further
echnical details, we refer readers to the abovementioned works.

We seek to minimize the error functional

� �1/2�D�dp�dobs�T*��D�dp�dobs��

�1/2�h�Wmh�T�Wmh��1/2�v�Wmv�T�Wmv�,

�1�
here T* denotes the transpose-conjugation operator and dobs and dp

he observed and predicted CSEM data, consisting of n complex val-
es of electric and magnetic fields at the detectors. A diagonal
eighting matrix D is incorporated into the error functional to help

ompensate for noisy measurements. Stabilization terms also appear
n equation 1 and are designed to treat media exhibiting transverse
lectrical anisotropy. Parameterization of anisotropic electrical con-
uctivity is made on a Cartesian grid, in which horizontal and verti-
al values are assigned to m cells — note that conductivity is the re-
iprocal of resistivity. Solution stabilization is achieved by reducing
he model curvature in three dimensions in the minimization pro-
ess. To do this, we use an FD approximation to the Laplacian ��2�,
roducing a roughening matrix W. Matrix W acts on the horizontal
nd vertical conductivity values mh and mv, which are bounded us-
ng log or hyperbolic transformations. The regularization parame-
ers �h and �v control the amount of smoothing admitted into the
odel for the two conductivities.
In modeling transverse anisotropy, an additional constraint is of-

en imposed, mh �mv. The inequality is strictly valid for the case of
hin vertical stacked layers that can be modeled as a parallel-serial
ircuit to electrical current flow in the horizontal and vertical direc-
ions.Although it is possible to enforce this inequality in the minimi-
ation of equation 1 with the parameterization

mv��mh; 0�� �1, �2�

e do not enforce it in the results reported here. Sedimentary forma-
ions, although often layered, might not be sufficiently thinly layered
or equation 2 to hold in general. Moreover, unlike well-logging
roblems in which measurements can be designed to sense varia-
ions in thin stacked layers along a well, CSEM measurements are

ade on the sea bed at a remote distance from such layering. They
re not capable of distinguishing thin vertical variations in layering
t the same resolution that can be recognized from induction log-
ing. Nevertheless, for the problems discussed in this paper, we find
quation 2 holds to a high degree even when the constraint is not ex-
licitly enforced.

MODEL STUDY

Before presenting any field cases, model studies can yield impor-
ant insight into interpreting the experimental results and can serve
o properly set expectations. We consider a simple model to illustrate
he key features in imaging data influenced by transverse anisotropic

edia. Because the CSEM method is designed to map resistors, we
resent models and imaging results that follow in the form of electri-
al resistivity instead of conductivity. The model shown in Figure 1
epresents a simple reservoir model of 50 � ·m isotropic resistivity.
ts host medium exhibits transverse anisotropy, where horizontal
�h� and vertical ��v� resistivities are 0.65 and 2 � ·m, respectively.
he seawater resistivity is isotropic �0.3 � ·m� and its depth is
lightly more than 1 km. The model also exhibits a flat sea bottom
ith no bathymetry.
Data-acquisition geometry consists of 10 sail lines spaced at 1 km

Figure 2�, where the transmitter transmits at 100-m intervals along
ach sail line at three frequencies: 1.25, 0.75, and 0.25 Hz. Twenty-
ve sea-bottom detectors on a uniformly sampled grid at 1 km are
lso shown. These detectors sample the horizontal electric fields in
rthogonal directions Ex and Ey, whereas magnetic data are also re-
orded with field measurements, it has been our experience they of-
er little more information content than what is present in the electric
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CSEM imaging and electrical anisotropy F53
elds and will not be used here. Inline data �the null coupled data
rising from detector antennas perpendicular to the sail line are dis-
arded� and broadside data are present. For computational efficien-
y, we use reciprocity in which the detectors become the computa-
ional transmitters and the transmitters become the computational
eceivers. Numerical tests have demonstrated that the requirements
f reciprocity are met to a satisfactory degree by the FD scheme
sed. Exploiting reciprocity results in 150 computational transmit-
ers and 211,200 computational detectors.

In generating the synthetic data, we used a much finer grid — 2013

odes �cell size 50 m� — than used in the imaging experiments.
hree simulation grids were used in the imaging, corresponding to
13, 813, and 1013 nodes and assigned to frequencies 0.25, 0.75, and
.25 Hz. The respective cell sizes for the simulation grids are 200,
25, and 100 m and are adapted to source frequency to meet the spa-
ial sampling requirement of four grid nodes per skin depth. These
rids are assigned to each computational transmitter depending on
requency and are used to compute predicted data and simulate fields
ithin the medium. The grid used to render the image is finer than the

imulation grids — 1203 nodes. Separation of the imaging grid from
he simulation grids results in significant acceleration in the compu-
ations. Interested readers are referred to Commer and Newman
2008� and the appendix for more details on the grid separation ap-
roach.

Five-percent Gaussian noise was added to the data and data ampli-
udes below an assumed noise floor of 1�10�13 were discarded.
ata weighting was based on the amplitude of each data component

o ensure that long offset data would make meaningful contributions
n the error functional. In selecting the regularization tradeoff pa-
ameters �h and �v, we did not enforce directionally dependent
moothing on the model. Larger tradeoff parameters produce
moother images at the expense of an increase in the data-fitting er-
ors and smaller tradeoff parameters produce the opposite. The
hoice of regularization parameters is dictated by the data noise and
s optimally carried out using a cooling approach, in which initially
arge tradeoff parameters are selected and then systematically re-
uced until the data fit to the expected noise. This can lead to multi-
le inversion runs at considerable cost. For purposes here, we tested
everal values, settling on tradeoff parameters that were fixed to a
alue of 0.25.

50 m

1.05 km 0.3 Ω.m

0.65h/2.0v Ω.m

50h/50v Ω.m

Tx

Rx
1.2 km

0.3 km
3.0 km

SL = 3.0 km

igure 1. Asimple 3D model to illustrate the key features in imaging
ata influenced by transverse anisotropy.
We carried out imaging of the data using two types of measure-
ents: overflight and broadside data together, and overflight data

nly. This choice in considering two types of data is influenced by
ndings that broadside data with detectors parallel to the tow line are
ore sensitive to horizontal resistivity, much more so than overflight

ata �Commer et al., 2008�. Using an isotropic starting model of
� .m for the sea bed, imaging results for a combination of over-

ight and broadside data �left panels� and only overflight data �right
anels� are shown in Figures 3 and 4 in cross section and plan views.
nhanced resistivity of the reservoir zone is indicated in the vertical

esistivity. Moreover, horizontal and vertical resistivities of the host
edium are also captured within the sensitivity footprint of mea-

urements. Footprints for vertical and horizontal resistivity illumi-
ation correspond to bowl-like structures; outside the illumination
ootprint there is little to no change in the resistivity from the starting
odel. These structures extend to several kilometers depth over the

enter of the tow lines and are more clearly rendered when the hori-
ontal and vertical resistivity are plotted as a ratio �see Figure 5�. The
nisotropic imaging results show that treatment of overflight and
roadside data renders sharper images than using data acquired only
n the overflight mode. However, the overflight data produce a better
epth estimate of the reservoir. This result arises because the imag-
ng process was allowed to continue out to 250 iterations, compared
o 100 iterations for the broadside and overflight data �see Figure 6�.
mproved depth resolution is observed as the problem is iterated.

Failure to image the reservoir is clear when inline and broadside
ata are treated assuming isotropic media. Rapid resistivity varia-
ions down to several hundred meters below the seafloor are ob-
erved, below which a low-resistivity feature several hundred
eters thick is also indicated. The resulting data misfit �the data

omponent part in equation 1� is unacceptably large �see the top plot
n Figure 6�, indicating the modeling assumptions are inadequate to
mage the data. Inspection of the data fits show that the cause for this
oor result is due to the broadside data, specifically arising from de-

Sail lines

Computational
transmitters

Sea-bottom
detector

-4 -3 -2 -1 0 1 2 3 4 km

Scale

Overflight
Ey Ey ΔyEx Ex

Measurement configurations

broadside

igure 2. The data acquisition geometry consists of 10 sail lines
paced at 1 km. Twenty-five sea-bottom detectors are shown and the
rojection of the reservoir is indicated by the dashed square. Differ-
nt measurement configurations are also illustrated.
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F54 Newman et al.
ectors oriented parallel to the tow line. It confirms findings obtained
rom isotropic imaging of field data discussed below. Because inline
roadside data are very sensitive to horizontal resistivity, failure to
nclude anisotropy in the imaging process can produce disastrous
mage artifacts. However, the problem can be reduced by imaging
nly the overflight data. The result is illustrated in the right panels of
igures 3 and 4. Although still inferior to anisotropic imaging, en-
anced resistivity is clearly associated with the reservoir. Thus over-
ight data are not that sensitive to horizontal resistivity but rather to
ertical resistivity and can be imaged using an isotropic model, al-
hough image artifacts near the sea bottom remain. Data misfit is also

uch better in this case than when broadside and inline data are im-
ged assuming isotropic media �compare the corresponding top and
ottom plots in Figure 6�.

Results from this model study can be summarized as follows:
ith CSEM data, sensitivity to horizontal resistivity will be stron-

est in the broadside data with detectors parallel to and offset from
he tow line and isotropic imaging assumptions can produce serious
rtifacts. Although it is possible to image vertical resistivity with
verflight data and still extract useful information assuming an iso-
ropic model, optimal results require a full treatment of anisotropic

edia within the imaging process.

FIELD EXAMPLES

Two field examples will now be presented. It is outside the scope
f this paper to carry out a complete appraisal analysis of images
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igure 3. Imaged cross sections of the test model assuming isotropic
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re images based only on overflight data.
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igure 5. Cross-sectional ratio plots of horizontal ��h� to vertical
�v� resistivity of the test model directly over the reservoir, y

0 km. Plots are based on inline and inline plus broadside data il-
ustrated on a log scale. They were generated from the anisotropic
maging results of Figure 3. A value of 0.33 corresponds to the cor-
ect ratio for the background. Ratios near one indicate there is little
hange from the starting model and consequently the recovered
odel has little to no sensitivity to the data at these image points.
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CSEM imaging and electrical anisotropy F55
roduced from field data. Such an analysis requires multiple inver-
ions using different assumptions of data noise and weighting, regu-
arization tradeoff parameters, and starting models. Tradeoffs be-
ween vertical and horizontal resistivity are certain to arise in the im-
ge process. The nature of these tradeoffs is difficult to quantify
ithout a thorough appraisal study; therefore, our aim is more mod-

st: to demonstrate that consistent anisotropic resistivity models can
e produced that fit the observations better than isotropic models and
o confirm findings from the model study. When features of the resis-
ivity models can be verified with independent information, we will
o so. Encouragingly, critical features of these models can be con-
rmed.

able 1. List of model and simulation grids for the Troll data
odeling mesh and the two simulations meshes designed for f

rid Number of cells 	x

m 125�41�59 250

	x
min /	x

max

s
1 85�41�85 125 /250

s
2 110�43�85 75 /125

1000

100

10

10 20 40 60 80 100

M
isf
it

Iteration number

Isotropic
Anisotropic

1000

100

10

1

0.1
0 50 100 150 200 250 300

M
isf
it

Iteration number

Isotropic
Anisotropic

igure 6. Convergence plots for isotropic and anisotropic media.
he top plots show the data misfits plotted against inversion iteration

or broadside and overflight data. Ideally, the target misfit is one as-
uming that the noise in the data is Gaussian. The lower plot is only
or overflight data. Note also that number of iterations used for an-
sotropic imaging differs in the two plots.
roll field

Controlled-source electromagnetic �CSEM� data acquired over
he Troll West Gas Province �TWGP� have been used to vet isotropic
maging algorithms developed by various researchers �cf. Commer
nd Newman, 2008; Plessix and Mulder, 2008, Li et al. 2009, among
thers�. Here we will use the data to verify results thus far developed
rom the model study for anisotropic media. The gas reservoir is lo-
ated offshore Norway in the North Sea. A single 25-km-long sail
ine crosses over the reservoir with 24 CSEM electric field detectors
paced along 12 km of the line, over the gas field. The transmitter is
owed in an overflight profile mode at an average height of 25 m
bove the seafloor. Seawater depth varies from 300 to 360 m over
he sail line. Following Commer and Newman �2008�, bathymetry
ffects are assumed to be minimal and ignored in the analysis. Data
t two frequencies were used — 0.75 and 0.25 Hz. Simulation mesh-
s used for the two frequencies are based on skin depth estimations,
s discussed earlier. A separate simulation mesh is assigned to each
ource in practice and is adapted to the source and receiver positions
nd their corresponding offsets. The meshing is summarized in Ta-
le 1 along with the imaging mesh. We also used the same type of
ata amplitude weighting and the noise floor assumptions for the
eld data as was done in the model study and by Commer and New-
an’s �2008� earlier investigation. Vertical and horizontal regular-

zation tradeoff parameters were fixed at 0.1 and are also based on
he tradeoff parameter that was used in the analysis of the Troll data
hat assumed an isotropic resistivity model.Additional details on the
roll survey logistics and the setup of the imaging experiment can be
ound in Johansen et al. �2005�.

Figure 7 compares imaging results for anisotropic and isotropic
edia along with an interpreted geologic section published by Jo-

ansen et al. �2005�, based principally on well-log and seismic data.
sotropic and anisotropic �vertical resistivity� models clearly image
he gas field and correspond closely to the geologic section. Even
hough we failed to achieve the target misfit of one �Figure 8�, the an-
sotropic inversion produced a model that yields good data fits and a
ower misfit error. Sensitivities to horizontal and vertical resistivity
ariations are observed and it appears that the isotropic imaging at-
empts to merge these disparate resistivities into a single image. It is
empting to assign low-resistivity features to horizontal resistivity
ariations but a detailed appraisal study is needed to make a determi-
ation. These features could also arise from a tradeoff between verti-
al and horizontal resistivity parameterization and from stabiliza-
ion/regularization used in the imaging. Down to 1-km depth below
he sea bed, we observed much less variation in the vertical and hori-
ontal resistivities than in the isotropic case; at the seafloor we ob-
erved resistivity variations for isotropic and anisotropic cases. We
elieve this is caused by detector positioning errors and high sensi-
ivity in the imaging to near sea-bottom resistivity variations.Aniso-

sion. The variables �m and � s
1 and � s

2 correspond to the
ncies 0.25 and 0.75 Hz. Grid sizes are in meters.

	y 	z

250 100

	y
min /	y

max 	z
min /	z

max f�Hz�

250 /250 25 /200 0.25 � f1�
125 /250 25 /200 0.75 � f2�
inver
reque
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F56 Newman et al.
ropic imaging of the Troll data shows intriguing and consistent re-
ults. Even in anisotropic imaging of the overflight mode, lower da-
a-fitting errors are observed compared to isotropic imaging of the
ata.

ampos Basin

The Campos Basin, located offshore Brazil, is a known oil and gas
rovince with ongoing production. In 2004, a first-of-its-kind 3D
SEM survey was carried out to better quantify the hydrocarbon po-

ential over part of the basin. Analysis of the Campos Basin data in-
luding the broadside measurements without taking anisotropy into
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igure 7. Imaging results for the Troll field. The top part of the figure
s the interpretation published by Johansen et al. �2005� based on
ell-log and seismic data. The middle and lower panels show the

sotropic and anisotropic CSEM imaging results.
ccount produced serious image artifacts �Commer et al., 2008�. It
as demonstrated that inline broadside electric-field data were par-

icularly sensitive to horizontal resistivity and could not be interpret-
d with an isotropic model. Carazzone et al. �2008� present 3D an-
sotropy imaging results of Campos Basin data. With the treatment
f anisotropy, 3D imaging of the electric field data produced inter-
retable results. Here we will review the findings of these works, fo-
using on the importance of anisotropy in the imaging process.

The Campos Basin data were acquired using 10 sail lines at 5-km
ntervals �Figure 9�, resulting in data acquisition from nearly one

illion transmitter sites using three frequencies: 1.25, 0.75, and
.25 Hz. Twenty-three detectors were deployed on the seafloor on a
0�40 km2 grid. Horizontal grid sizes used in the imaging mesh
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igure 8. Convergence plots for isotropic and anisotropic media for
he Troll data set.
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igure 9. Shown are the layout of the sail lines and 23 sea-bottom de-
ectors indicated by the plus symbols for the Campos Basin CSEM
urvey. The bathymetry is in meters below sea level with a contour
nterval of 50 m. Data acquired at the detector in bold, shown closest
o the upper right-hand corner of the plot, is used to illustrate the da-
a-fitting errors for broadside and overflight data in Figure 10 along
ail lines RC06 and RC07.
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CSEM imaging and electrical anisotropy F57
ere kept constant at 	�250 m and vertical meshing varied from
0 to 200 m depth. Thus the total number of nodes used in the mesh-
ng was 403 along x and y and 173 nodes vertically, which corre-
ponds to 27.8 million cells. Horizontal meshing for field simulation
as designed on the criteria that from each computational source
idpoint, 10 skin depths were spanned assuming 2-� ·m resistivity

or the sea bed. Grid sizes varied with frequency and were set to 	
250 m, 200 m, and 125 m, according to frequency f �0.125 Hz,

.25 Hz, and 0.5 Hz, respectively. Vertical meshing for simulation
as identical to that in the image mesh to account for an accurate

epresentation of the seafloor bathymetry. With these consider-
tions, the size of the simulation meshes was reduced significantly;
he number of x and y grid nodes range from 128 to 162. Solution ac-
uracy was also verified against solutions in which simulation and
maging meshes were identical.

Overflight and broadside electric field data were imaged from
his experiment using fixed tradeoff parameters �h�0.025, �v

0.025, and ��0.25 for the isotropic case. A detailed 3D starting
odel was constructed from forward modeling of the data. To pre-

erve key features of the starting model in the imaging process, it
as necessary to avoid setting the regularization parameters too

arge because large parameters smooth out the resistivity image. We
lso avoided making them too small to ensure a stable image. Data
eighting used was based on the amplitude of the total electric field

t each computational detector to reduce the sensitivity of weakly
oupled data in the inversion process. Again, reciprocity processing
as used to reduce the number of computational transmitters. All

hree components of the electric field were included in the data anal-
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sis. Shown in Figure 10 are data fits for isotropic and anisotropic
odeling assumptions along selected profiles. The isotropic results

resented by Commer et al. �2008� show that it is possible to fit the
verflight data and broadside perpendicular and vertical data as the
roblem is iterated but not the broadside data arising from the detec-
ors parallel to the tow line �inline components�. A systematic fitting
rror is observed with broadside inline data displays, which does not
issipate as the problem is iterated. This indicates a bias in the under-
ying assumptions used in the image processing. However, over-
ight and broadside inline data can be fit with an anisotropy model.
hese results confirm that the broadside data, particularly the inline
etector components, are quite sensitive to horizontal resistivity and
ther data components to vertical resistivity.

Commer et al. �2008� show that the resistivity images created by
he isotropic media produced strong data-acquisition overprints,
articularly near the seafloor, and other nongeologic effects pro-
eeding to significant depths �this resistivity image is shown in Fig-
re 11�. Subsequent modeling by Commer et al. �2008� also con-
rms that improved broadside data fits �inline data� can be achieved
y considering the medium that exhibits transverse anisotropy. A
omplete anisotropic inversion of the data was carried out by Caraz-
one et al. �2008�.As expected, anisotropic resistivity imaging elim-
nates the problems observed with isotropic resistivity assumptions.
lthough the resistivity interpretation by Carazzone et al. �2008�
oes not directly reveal hydrocarbons, they demonstrate many cor-
elations between the resistivity and seismic images that high-grad-
d the hydrocarbon potential. Shown in Figure 12 is a vertical resis-
ivity transect across a known hydrocarbon reservoir with the seis-

45 000 50 000, ,

45 000 50 000, ,

Data
Initial fit
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Data
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Figure 10. Plotted are data fits to overflight data
�line RC07; upper left shows isotropic and lower
left shows anisotropic� �line RC06; upper right
shows isotropic and lower right shows anisotrop-
ic�. Data acquired at the detector in bold and the
plots are projected along the x axis �see Figure 9�.
The observed data are plotted in black, the predict-
ed data at iteration 72 and 63 in green, and the pre-
dicted data for the starting model in red. The data
correspond to a frequency of 0.125 Hz. The aniso-
tropic starting model uses a vertical resistivity
identical to that used in the isotropic imaging.
However, the horizontal resistivity was set to one
third the vertical resistivity below the water bot-
tom.
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F58 Newman et al.
ic image superimposed. The combined image shows three interest-
ng features. Anomaly A points to a resistivity enhancement associ-
ted with a known oil field below a seismically imaged fault. At
nomaly B, the resistivity enhancement is associated with a possible
rap above a salt diapir with stratigraphic pinchouts and faulting.
astly, anomaly C shows a possibility of conductive brine leaking up

rom deeper salt. Although salt is considered resistive, brines origi-
ating from it can be conductive. Such brines can be buoyant and rise
rom depth because of dissolved gas.

1 2
log ρ (Ω.m)

a)

b)

c)

igure 11. Shown is the average resistivity computed over three
epth ranges assuming an isotropic medium. The figure is from
ommer et al. �2008� and shows �a� average resistivity from the wa-

er bottom to 500-m depth, �b� depth interval 500 to 1500 m, and �c�
500 to 2500 m. Resistivity is rendered on a base 10 log scale.
CONCLUSIONS

The algorithm introduced in this paper has been designed to treat
D resistivity media exhibiting transverse anisotropy. Within the
tated modeling assumptions, this algorithm is sufficiently general
nd can treat large-scale imaging problems and industrial-sized data
olumes critical for 3D CSEM resistivity imaging. There are also
everal extensions to the algorithm worth mentioning. Joint imaging
f CSEM and magnetotelluric �MT� data has much appeal as MT
ata acquisition comes at little additional cost and can significantly
mprove resolution of the resistivity image �cf. Commer and New-

an, 2009�. Our approach to imaging 3D transverse anisotropy is
asily extended to a joint imaging framework for CSEM and MT
ata. In fact, we have already implemented it. An extension to treat
D media exhibiting generalized anisotropy is also possible but will
equire six resistivity estimates per image cell. We doubt that all six
arameters can ever be resolved given the additional number of de-
rees of freedom but future research on the problem might prove
therwise. The results from the Campos Basin study are encourag-
ng in this regard. Clearly, the anisotropy present is not strictly trans-
erse given how salt and faulting has distorted the geologic bedding
lanes yet a transverse anisotropic resistivity model is sufficient to fit
he data and has resistivity features that are geologically consistent
ith well information and seismic imaging results. Perhaps the de-

cription of the resistivity with horizontal and vertical resistivity is
ufficient here because the model is represented by cell values on a
rid. Because the cell size is much smaller than the skin depth, the
odeled anisotropy at the skin-depth scale is quite general.
Case and model studies confirm the importance of electrical an-

sotropy in imaging CSEM data. The presence of anisotropy can be
onfirmed when overflight and broadside electric-field measure-
ents are found to be inconsistent with an isotropic resistivity mod-

l. Electric field data acquired in the broadside configuration using
nline detectors are particularly sensitive to horizontal resistivity.

Sea floor
500 m BML

Salt

Salt

2500 m BML

Resistivity Ω.m

2 km

5 km

0

000

De
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h
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)

0 50 000Horizontal offset (m) ,
0.1 4

AA BB CC

igure 12. Rendered at the top is the average vertical resistivity map
rom 500 to 2500 m below the seafloor, superimposed with sail
ines used to acquire the Campos Basin data. Also shown are lease
lock boundaries outlined in violet and known hydrocarbon deposits
black contours�. The cross-section at the bottom shows the vertical
esistivity image along the indicated transect. The EM image is
hown together with seismic-reflection horizons. Results are pre-
ented by Carazzone et al. �2008�.
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CSEM imaging and electrical anisotropy F59
igh sensitivity to vertical resistivity is observed for overflight elec-
ric field data and broadside vertical and perpendicular data to some
xtent. Isotropic imaging using such data can yield meaningful re-
ults with respect to vertical resistivity �broadside measurements
mitted� because there is less sensitivity to horizontal resistivity
ariations. Nevertheless, we find that anisotropic imaging of these
ata produces superior results as measured by better data fits and
ore consistent resistivity models.
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APPENDIX A

3D CSEM INVERSE MODELING: TREATING
TRANSVERSE ANISOTROPY

Minimization of equation 1 is carried out using a nonlinear con-
ugate gradient scheme with a line search to control the model step.
ypically, only three to four solutions of the forward-modeling prob-

em for each transmitter and excitation frequency are necessary to
btain the model update. This iterative scheme is ideal for large-
cale data sets and imaging volumes that typically arise for CSEM
roblems. The solution for isotropic media has been developed by
ommer and Newman �2008� and Newman and Boggs �2005�. Here
e will discuss modifications to the abovementioned approach for
edia exhibiting transverse anisotropy.

Large computational demands arise in solving realistic 3D
SEM field simulation problems. In solving such problems, we use
D approximations over a simulation mesh because of their simplic-

ty and accuracy. Now the simulation mesh � s is not required to be
dentical to the mesh �m used for the inverse modeling. Hence, sig-
ificant computational efficiencies can be realized when the meshes
re different for large-scale problems �cf. Commer and Newman,
008�. The solution of the forward problem is obtained through a
parse linear system of equations

KE�S . �A-1�

t is solved using iterative Krylov methods �cf. Newman and Boggs,
005�. With 13 nonzero entries per row, K is a sparse complex sym-
etric matrix, E is the electric field sampled on the mesh using a

taggered grid �Yee, 1966�, and S is the field sourcing term, with Di-
ichlet boundary conditions imposed in equation A-1.

This matrix equation is a discrete representation of the operator

� � � �ES� i
�o�� ES�� i
�o��� ��� b�Eb,

�A-2�

here
�� ��� h 0 0

0 � h 0

0 0 � v
� and �� b��� h

b 0 0

0 � h
b 0

0 0 � v
b�

�A-3�

quation A-2 is a 3D vector equation for the scattered electric field
rising in conductive media exhibiting transverse anisotropy. It as-
umes a time harmonic dependence of e�i
t, where 
 represents an-
ular frequency and i���1. The electrical conductivity �� is de-
cribed by a tensor, where � h and � v denote the conductivities in the
orizontal and vertical directions; magnetic permeability �o is as-
umed to be that of free space. We prefer a scattered field solution to
he field equations over a total field because of accuracy issues, par-
icularly in the vicinity of the transmitter. In a scattered-field formu-
ation, we are also required to specify a background electric field Eb.
hus the total electric field is given by E�Eb�Es. Here we have
elected a background field arising from 1D layered media that also
xhibits transverse anisotropy �� b. The background field can be easi-
y and quickly computed from Hankel transforms. Once the electric
eld is determined from equation A-1, the magnetic field follows
rom Faraday’s law by numerically approximating the curl of the
lectric field at the various nodal points and interpolating these fields
o the points of interest. In a scattered field formulation, background
elds will need to be added to the interpolated fields to yield the total
elds.

Following Commer and Newman �2008�, the inversion un-
nowns mh and mv belong to �m and a mapping is required from � s

o �m in computing the gradient of equation 1. This gradient is used
o update the conductivity model in the inversion process using the
onlinear conjugate-gradient scheme previously mentioned. Con-
ider the data component of the gradient �
d�mh,mv�, which in-
olves only the first term in equation 1,

�
d�mh,mv���Re��DJT�D�dp�dobs�*� . �A-4�

he above expression requires the Jacobian matrix, which we split
nto horizontal and vertical components based on horizontal and ver-
ical conductivity sensitivities

J��jh

jv
	 . �A-5�

Here specific elements are given by

j jk
h �

�dj
p

�mhk

and j jk
v �

�dj
p

�mvk

j� , . . . ,N; k�1, . . . ,M,

�A-6�

ith N and M representing the number of data points and inverse
odeling cells. In terms of the electric field on the simulation mesh
s, the Jacobian elements can also be expressed by

j jk
h �q j

T �E

�mhk

�A-7�

nd

j jk
v �q j

T �E

�mvk

, �A-8�
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here qj is a column vector for the jth data point that maps the elec-
ric field solution on � s to the detector location. Next, differentiating
quation A-1 with respect to mhk

and mvk
, we have

�E

�mhk

�K�1
 �S

�mhk

�
�K

�mhk

E� �A-9�

nd

�E

�mvk

�K�1
 �S

�mvk

�
�K

�mvk

E� . �A-10�

sing the chain rule, we can express equations A-9 and A-10 in
erms of the conductivities on the simulation mesh, where

�E

�mhk

�K�1
�
l�1

P�k�
�S

�� hl

�� hl

�mhk

� �
l�1

P�k�
�K

�� hl

�� hl

�mhk

E�
�A-11�

nd

�E

�mvk

�K�1
�
l�1

Q�k�
�S

�� vl

�� vl

�mvk

� �
l�1

Q�k�
�K

�� vl

�� vl

�mvk

E� .

�A-12�

The summations are over conductivity cells on the simulation
esh that overlap cell k on the modeling mesh �Figure A-1�. For the

th model �inversion� cell, we have P�k� and Q�k� horizontal and
ertical conductivities overlapping from the simulation mesh. For
he isotropic case, Commer and Newman �2008� provide an explicit
ormula for �� l /�mk based on a material averaging scheme of

oskow et al. �1999�. The extension to media exhibiting transverse
nisotropy is straightforward, with material averaging for horizontal
nd vertical conductivities each done separately. Computational ef-
cient forms for the gradient �the data part� follow by substituting
quations A-11 and A-12 into equations A-7 and A-8 followed by
ubstitution into equation A-4. Note we never explicitly form K�1 or

zk –1

zk

zk +1

xi

σh

z

x
xi+1

σh = mσh
xi +1 1 1

xi
(x,z)dz dx

⎝
⎛

⎝
⎛∫

zk +1/2
zk –1/2∫

– –

igure A-1. Concept of separate model/inversion and simulation
rids is illustrated in two dimensions. The dashed grid corresponds
o the model/inversion mesh �m and the solid grid to the simulation
esh � s. Field simulation on a staggered grid requires that the elec-

rical conductivity be sampled at the edges of the simulation grid; il-
ustrated here is the case for � h. The zone outlined in red corresponds
o the averaging area on the modeling grid from which � h is to be
omputed on the simulation grid using the aggregation formula from
oskow et al. �1999�, shown at the top of the figure.
he Jacobian when evaluating the gradient. For computational effi-
iency, an adjoint state method is exploited. We refer the reader to
ewman and Boggs �2005� for further details.

REFERENCES

arazzone, J. J., O. M. Burtz, K. E. Green, D. A. Pavlov, and C. Xia, 2005,
Three-dimensional imaging of marine CSEM data: 75th Annual Interna-
tional Meeting, SEG, ExpandedAbstracts, 575–578.

arazzone, J. J., T. A. Dickens, K. E. Green, C. Jing, L. A. Wahrmund, D. E.
Willen, and M. Commer, and G. A. Newman, 2008, Inversion study of a
large marine CSEM survey: 78th Annual International Meeting, SEG, Ex-
pandedAbstracts, 644–647.

ommer, M., and G. A. Newman, 2008, New advances in three-dimensional
controlled-source electromagnetic inversion: Geophysical Journal Inter-
national, 172, 513–535.
—–, 2009, Three-dimensional controlled-source electromagnetic and
magnetotelluric joint inversion: Geophysical Journal International, 178,
1305–1316.

ommer, M., G. A. Newman, J. J. Carazzone, T. A. Dickens, K. E. Green, L.
A. Wahrmund, D. E. Willen, and J. Shiu, 2008, Massively parallel electri-
cal-conductivity imaging of hydrocarbons using the IBM Blue Gene/L su-
percomputer: IBM Journal of Research and Development, 52, no. 1/2, 93–
103.

onstable, S., 2006, Marine electromagnetic methods — A new tool for off-
shore exploration: The Leading Edge, 25, 438–444.

idesmo, T., S. Ellingsrud, L. M. MacGregor, S. Constable, M. C. Sinha, S.
Johansen, S. Kong, and F. N. Westerdahl, 2002, Sea bed logging �SBL�: A
new method for remote and direct identification of hydrocarbon filled lay-
ers in deepwater areas: First Break, 20.3, 144–152.

llingsrud, S., T. Eidesmo, S. Johansen, M. C. Sinha, L. M. MacGregor, and
S. Constable, 2002, Remote sensing of hydrocarbon layers by seabed log-
ging �SBL�: Results from a cruise offshoreAngola: The Leading Edge, 21,
972–982.

reen, K. E., O. M. Burtz, L. A. Wahrmund, T. Clee, I. Gallegos, C. Xia, G.
Zelewski, A. A. Martinez, M. J. Stiver, C. M. Rodriguez, and J. Zhang,
2005, R3M case studies: Detecting reservoir resistivity in complex set-
tings: 75thAnnual International Meeting, SEG, ExpandedAbstracts, 572–
574.

ribenko, A., and M. Zhdanov, 2007, Rigorous 3D inversion of marine
CSEM data based on the integral equation method: Geophysics, 72, no. 2,
WA73–WA84.

oversten, G. M., G. A. Newman, N. Geier, and G. Flanagan, 2006, 3D mod-
eling of a deepwater EM exploration survey: Geophysics, 71, no. 5, G239–
G248.

ing, C., K. E. Green, and D. Willen, 2008, CSEM inversion: Impact of aniso-
tropy, data coverage, and initial models: 78th Annual International Meet-
ing, SEG, ExpandedAbstracts, 604–607.

ohansen, S. E., H. E. F. Amundsen, T. Røsten, S. Ellingrud, and T. Eidesmo,
2005, Subsurface hydrocarbons detected by electromagnetic sounding:
First Break, 23, 31–36.

i, M., A. Abubakar, T. Habashy, and Y. Zhang, 2009, Inversion of CSEM
data with a model-based inversion algorithm: Geophysical Prospecting,
doi: 10.1111/j.1365-2478.2009.00824.x.

u, X., and C. Xia, 2007, Understanding anisotropy in marine CSEM data:
77thAnnual International Meeting, SEG, ExpandedAbstracts, 633–637.
acGregor, L., D. Andeis, T. Tomlinson, and N. Barker, 2006, Controlled-
source electromagnetic imaging of the Nuggets-1 reservoir: The Leading
Edge, 25, 984–992.
acGregor, L., N. Baker, A. Overton, S. Moody, and D. Bodecott, 2007, De-
risking exploration prospects using integrated seismic and electromagnet-
ic data —AFalkland Islands case study: The Leading Edge, 26, 356–359.
oskow, S., V. Druskin, T. Habashy, P. Lee, and S. Davdychewa, 1999, A fi-
nite difference scheme for elliptic equations with rough coefficients using
a Cartesian grid nonconforming to interfaces: SIAM Journal on Numerical
Analysis, 36, no. 2, 442–464.

ewman, G. A., and D. L. Alumbaugh, 2002, Three-dimensional induction
logging problems, Part 2: A finite-difference solution: Geophysics, 67,
484–491.

ewman, G. A., and P. T. Boggs, 2005, Solution accelerators for large-scale
three-dimensional electromagnetic inverse problems: Inverse Problems,
20, S151–S170.

ewman, G. A., and M. Commer, 2008, The influence of electrical anisotro-
py in 3D marine CSEM surveys: 24th Progress in Electromagnetic Re-
search Symposium,Abstracts, 293.

lessix, R. E., and P. van der Sman, 2007, 3D CSEM modeling and inversion
in complex geological settings: 77th Annual International Meeting, SEG,
ExpandedAbstracts, 589–593.

lessix, R.-E., and W. A. Mulder, 2008, Resistivity imaging with controlled-
source electromagnetic data: Depth and data weighting: Inverse Problems,



P

T

T

W

W

Y

Z

CSEM imaging and electrical anisotropy F61
24, 1–22.
lessix, R. E., and P. van der Sman, 2008, Regularized and blocky 3D con-
trolled source electromagnetic inversion: 24th Progress in Electromagnet-
ic Research Symposium,Abstracts, 755–760.

ompkins, M., 2005, The role of vertical anisotropy in interpreting marine
controlled-source electromagnetic data: 75th Annual International Meet-
ing, SEG, ExpandedAbstracts, 514–517.

ompkins, M., R. Weaver, and L. MacGregor, 2004, Effects of vertical aniso-
tropy on marine active source electromagnetic data and inversions: 66th
Conference and Exhibition, EAGE, ExtendedAbstracts, E026.

eiss, C. J., and S. Constable, 2006, Mapping thin resistors and hydrocar-
bons with marine EM methods, Part 2 — Modeling and analysis in 3D:
Geophysics, 71, no 6, G321–G332.
eiss, C. J., and G. A. Newman, 2002, Electromagnetic induction in a fully
3-D anisotropic earth: Geophysics, 67, 1104–1114.

ee, K. S., 1966, Numerical solution of initial boundary value problems in-
volving Maxwell’s equations in isotropic media: IEEE Transactions on
Antennas and Propogation, AP-14, 302–307.

ach, J. J., A. K. Bjørke, T. Støren, and F. Maaø, 2008, 3D inversion of ma-
rine CSEM data using a fast finite-difference time-domain forward code
and approximate Hessian-based optimization: 78th Annual International

Meeting, SEG, ExpandedAbstracts, 614–618.


